Add like
Add dislike
Add to saved papers

Combinatorial optimization of resveratrol production in engineered E. coli.

Resveratrol, a plant-derived polyphenolic compound with various health activities, is widely used in nutraceutical and food additives. Herein, combinatorial optimization of resveratrol biosynthetic pathway and intracellular environment of E. coli was carried out. Screening pathway genes from various species and exploring their expression pattern, we constructed initial resveratrol-producing strain. Further targeting at availability of malonyl-CoA through expressing ACC of Corynebacterium glutamicum and antisense inhibiting native fabD significantly increased resveratrol biosynthesis. Transport engineering for resveratrol secretion and molecular chaperones helping for folding heterologous enzymes were employed to improve the intracellular environments in remarkable degrees. By introducing PcTAL of Phanerochaete chrysosporium and tuning expression model of PcTAL, At4CL, and VvSTS, an engineered E. coli produced 57.77 mg/L of resveratrol from L-tyrosine. After integrating above strategies, resveratrol titer reached to 238.71 mg/L from L-tyrosine. The combinatorial optimization in this study provides a promising strategy to produce valuable natural products in heterologous expression systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app