Add like
Add dislike
Add to saved papers

Evidence for lack of direct causality between pain and affective disturbances in a rat peripheral neuropathy model.

Chronic pain is frequently accompanied by the manifestation of emotional disturbances and cognitive deficits. While a causality relation between pain and emotional/cognitive disturbances is generally assumed, several observations suggest a temporal dissociation and independent mechanisms. We therefore studied Sprague-Dawley rats that presented a natural resistance to pain manifestation in a neuropathy model (spared nerve injury; SNI) and compared their performance in a battery of behavioral paradigms - anxiety, depression and fear memory - with animals that presented a pain phenotype. Afterwards, we performed an extensive volumetric analysis across prefrontal, orbitofrontal and insular cortical areas. The majority of SNI animals manifested mechanical allodynia (low threshold, LT) but 13% were similar to Sham controls (high threshold, HT). Readouts of spontaneous hypersensivity (paw flinches) were also significantly reduced in HT and correlated with allodynia. To increase the specificity of our findings we segregated the SNI animals in those with left (SNI-L) and right (SNI-R) lesions and the lack of association between pain and behavior still remains. Left- lesioned animals, independently of the LT or HT phenotype, presented increased anxiety-like behaviors and decreased wellbeing. In contrast, we found that the insular cortex (agranular division) was significantly smaller in HT than in LT. To conclude, pain and emotional disturbances observed following nerve injury are to some extent segregated phenomena. Also, HT and LT SNI presented differences in insular volumes, an area vastly implicated in pain perception, suggesting a supraspinal involvement in the manifestation of these phenotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app