Add like
Add dislike
Add to saved papers

Field associations of first generation densities of the pest mites Halotydeus destructor and Penthaleus major in pasture.

Halotydeus destructor and Penthaleus major are species of earth mite commonly found at high densities in agricultural fields in Australia and other parts of the world. These mites pose a risk to a range of winter crops and pastures when seedlings emerge in autumn. In order to predict likely mite pressure, we investigated whether autumn densities in pastures can be determined from agronomic and environmental field variables. For H. destructor, field densities showed little association with a range of vegetation variables but could largely be explained using the variable field type, with high densities present when fields had mixtures of grass, clover and weeds. For P. major, we found a regional effect. In the region where most data were available, P. major field densities were associated with grass abundance, whereas an association with field type was significant but different to that found for H. destructor. For both species, densities were not associated with rainfall, but there was a weak association with soil moisture capacity. We discuss how these results can help in managing these important pest mites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app