Add like
Add dislike
Add to saved papers

Effect of Polyelectrolyte Mono- and Bilayer Formation on the Colloidal Stability of Layered Double Hydroxide Nanoparticles.

Nanomaterials 2018 November 29
Sequential adsorption of polyelectrolytes on nanoparticles is a popular method to obtain thin films after deposition. However, the effect of polyelectrolyte multilayer formation on the colloidal stability of the nanoparticles has not been studied in detail. In the present work, layered double hydroxides (LDH) were synthesized and interaction with oppositely and like-charged polyelectrolytes was investigated. Electrophoretic and light scattering measurements revealed that colloidal stability of LDH can be tuned by adsorption of poly(styrene sulfonate) (PSS) on the oppositely charged LDH surface in appropriate doses and thus, unstable or stable dispersions can be designed. Negatively charged LDH of adsorbed PSS monolayer was obtained and a poly(diallyldimethyl ammonium chloride) (PDADMAC) second layer was systematically built on the particles. The obtained polyelectrolyte bilayer provided high colloidal stability for the LDH-PSS-PDADMAC dispersions due to the presence of repulsive interparticle forces of electrostatic and steric origin. The results provide crucial quantitative information on designing highly stable particle-polyelectrolyte systems for the preparation of thin films or immobilization of guest substances between the layers for delivery processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app