Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Widespread Accumulation of Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain.

Cell Reports 2018 November 28
Particular brain regions and cell populations exhibit increased susceptibility to aging-related stresses. Here, we describe the age-specific and brain-region-specific accumulation of ribosome-associated 3' UTR RNAs that lack the 5' UTR and open reading frame. Our study reveals that this phenomenon impacts hundreds of genes in aged D1 spiny projection neurons of the mouse striatum and also occurs in the aging human brain. Isolated 3' UTR accumulation is tightly correlated with mitochondrial gene expression and oxidative stress, with full-length mRNA expression that is reduced but not eliminated, and with production of short 3' UTR-encoded peptides. Depletion of the oxidation-sensitive Fe-S cluster ribosome recycling factor ABCE1 induces the accumulation of 3' UTRs, consistent with a model in which ribosome stalling and mRNA cleavage by No-Go decay yields isolated 3' UTR RNAs protected by ribosomes. Isolated 3' UTR accumulation is a hallmark of brain aging, likely reflecting regional differences in metabolism and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app