Add like
Add dislike
Add to saved papers

Chemically mediated interactions between Microcystis and Planktothrix: impact on their growth, morphology and metabolic profiles.

Freshwater cyanobacteria are known for their ability to produce bioactive compounds, some of which have been described as allelochemicals. Using a combined approach of co-cultures and analyses of metabolic profiles, we investigated chemically mediated interactions between two cyanobacterial strains, Microcystis aeruginosa PCC7806 and Planktothrix agardhii PCC7805. More precisely, we evaluated changes in growth, morphology and metabolite production and release by both interacting species. Co-culture of Microcystis with Planktothrix resulted in a reduction of the growth of Planktothrix together with a decrease of its trichome size and alterations in the morphology of its cells. The production of intracellular compounds by Planktothrix showed a slight decrease between mono and co-culture conditions. Concerning Microcystis, the number of intracellular compounds was higher under co-culture condition than under monoculture. Overall, Microcystis produced a lower number of intracellular compounds under monoculture than Planktothrix, and a higher number of intracellular compounds than Planktothrix under co-culture condition. Our investigation did not allow us to identify specifically the compounds causing the observed physiological and morphological changes of Planktothrix cells. However, altogether, these results suggest that co-culture induces specific compounds as a response by Microcystis to the presence of Planktothrix. Further studies should be undertaken for identification of such potential allelochemicals. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app