Add like
Add dislike
Add to saved papers

Relationship between hemodynamic parameters and severity of ischemia-induced left ventricular wall thickening during cardiopulmonary resuscitation of consistent quality.

Ischemia-induced left ventricular (LV) wall thickening compromises the hemodynamic effectiveness of cardiopulmonary resuscitation (CPR). However, accurate assessment of the severity of ischemia-induced LV wall thickening during CPR is challenging. We investigated, in a swine model, whether hemodynamic parameters, including end-tidal carbon dioxide (ETCO2) level, are linearly associated with the severity of ischemia-induced LV wall thickening during CPR of consistent quality. We retrospectively analyzed 96 datasets for ETCO2 level, arterial pressure, LV wall thickness, and the percent of measured end-diastolic volume (%EDV) relative to EDV at the onset of ventricular fibrillation from eight pigs. Animals underwent advanced cardiovascular life support based on resuscitation guidelines. During CPR, LV wall thickness progressively increased while %EDV progressively decreased. Systolic and diastolic arterial pressure and ETCO2 level were significantly correlated with LV wall thickness and %EDV. Linear mixed effect models revealed that, after adjustment for significant covariates, systolic and diastolic arterial pressure were not associated with LV wall thickness or %EDV. ETCO2 level had a significant linear relationship with %EDV (P = 0.004). However, it could explain only 28.2% of the total variance of %EDV in our model. In conclusion, none of the hemodynamic parameters examined in this study appeared to provide sufficient information on the severity of ischemia-induced LV wall thickening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app