Add like
Add dislike
Add to saved papers

Simulating Powder X-ray Diffraction Patterns of Two-Dimensional Materials.

Inorganic Chemistry 2018 November 29
Powder X-ray diffraction (PXRD) is widely used to study atomic arrangements in ordered materials. The Bragg equation, which describes diffraction of a three-dimensional crystal, fails in two-dimensional (2D) cases. Complete integration of diffraction signals from a continuum instead of discrete directions in the Bragg equation is thus required for proper data interpretation of 2D materials. Furthermore, modeling of preferred orientation of the 2D crystals as well as geometric disorders are also of vital importance. Here, we present a complete integration method in real space (CIREALS) for PXRD simulation of monolayer or multilayer 2D crystals, especially 2D metal-organic layers and 2D covalent organic frameworks. By working in real space instead of reciprocal space, we can readily capture the 2D geometry and preferred orientation of these materials. The predicted PXRD patterns by CIREALS facilitates structure analysis of these new types of 2D material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app