Add like
Add dislike
Add to saved papers

Rapid Dissolution of BaSO 4 by Macropa, an 18-Membered Macrocycle with High Affinity for Ba 2 .

Insoluble BaSO4 scale is a costly and time-consuming problem in the petroleum industry. Clearance of BaSO4 -impeded pipelines requires chelating agents that can efficiently bind Ba2+ , the largest nonradioactive +2 metal ion. Due to the poor affinity of currently available chelating agents for Ba2+ , however, the dissolution of BaSO4 remains inefficient, requiring very basic solutions of ligands. In this study, we investigated three diaza-18-crown-6 macrocycles bearing different pendent arms for the chelation of Ba2+ and assessed their potential for dissolving BaSO4 scale. Remarkably, the bis-picolinate ligand macropa exhibits the highest affinity reported to date for Ba2+ at pH 7.4 (log K' = 10.74), forming a complex of significant kinetic stability with this large metal ion. Furthermore, the BaSO4 dissolution properties of macropa dramatically surpass those of the state-of-the-art ligands DTPA and DOTA. Using macropa, complete dissolution of a molar equivalent of BaSO4 is reached within 30 min at room temperature in pH 8 buffer, conditions under which DTPA and DOTA only achieve 40% dissolution of BaSO4 . When further applied for the dissolution of natural barite, macropa also outperforms DTPA, showing that this ligand is potentially valuable for industrial processes. Collectively, this work demonstrates that macropa is a highly effective chelator for Ba2+ that can be applied for the remediation of BaSO4 scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app