JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The use of cobalt chloride as a chemical hypoxia model.

The use of hypoxia models in cell culture has allowed the characterization of the hypoxia response at the cellular, biochemical and molecular levels. Although a decrease in oxygen concentration is the optimal hypoxia model, the problem faced by many researchers is access to a hypoxia chamber or a CO2 incubator with regulated oxygen levels, which is not possible in many laboratories. Several alternative models have been used to mimic hypoxia. One of the most commonly used models is cobalt chloride-induced chemical hypoxia because it stabilizes hypoxia inducible factors 1α and 2α under normoxic conditions. This model has several advantages, and currently, there is a substantial amount of scattered information about how this model works. This review describes the characteristics of the model, as well as the biochemical and molecular bases that support it. The regulation of hypoxia inducible factors by oxygen and the role of CoCl2 are explained to understand the most accepted bases of the CoCl2 -induced hypoxia model. The different current hypotheses that explain the establishment of hypoxic conditions using CoCl2 are also described. Finally, based on the different observations reported in the literature, we provide a critical review about the scope and limitations of this widely used chemical hypoxia model to be informative to all researchers interested in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app