Add like
Add dislike
Add to saved papers

Tuning Hydrogenated Si, Ge, and SiGe Nanocluster Properties Using Theoretical Calculations and a Machine Learning Approach.

There are limited studies available that predict the properties of hydrogenated silicon-germanium (SiGe) clusters. For this purpose, we conducted a computational study of 46 hydrogenated SiGe clusters (SixGeyHz, 1<X+Y≤6) to predict the structural, thermochemical, and electronic properties. The optimized geometries of the SixGeyHz clusters were investigated using quantum chemical calculations and statistical thermodynamics. The clusters contained 6 to 9 fused Si-Si, Ge-Ge, or Si-Ge bonds, i.e., bonds participating in more than one 3- to 4-membered rings, and different degrees of hydrogenation, i.e., the ratio of hydrogen to Si/Ge atoms varied depending on cluster size and degree of multifunctionality. Our studies have established trends in standard enthalpy of formation, standard entropy, and constant pressure heat capacity as a function of cluster composition and structure. A novel bond additivity correction model for SiGe chemistry was regressed from experimental data on 7 acyclic Si/Ge/SiGe species to improve the accuracy of the standard enthalpy of formation predictions. Electronic properties were investigated by analysis of the HOMO-LUMO energy gap to study the effect of elemental composition on the electronic stability of SixGeyHz clusters. These properties will be discussed in the context of tailored nanomaterials design and generalized using a machine learning approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app