Add like
Add dislike
Add to saved papers

Template-free synthesis of nanoparticle-built MgO and Zn-doped MgO hollow microspheres with superior performance for Congo red adsorption from water.

Nanoparticle-built MgO hollow microspheres were synthesized through a template-free hydrothermal route using citrate as a structural director. Zn was introduced into MgO to improve the surface charge. Pure MgO and Zn-doped MgO samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a zeta-potential analyzer. The as-prepared microspheres showed outstanding performance for the removal of Congo red (CR, anionic dye) from solutions. The maximum adsorption capacities of pure MgO and Zn-doped MgO samples were 3022.02 and 2953.39 mg g-1, respectively. The Zn-loaded sample only required 45 min to reach equilibrium, which was much shorter than that of pure MgO sample (120 min) and most previously reported adsorbents. The high adsorption capacity and efficiency for CR removal resulted from the samples' unique porous structures and positive surface charges at pH 7. The adsorption process followed Langmuir isotherm and pseudo-second-order model. Regeneration assessment was conducted by a method of calcining for four times, and the observed steady adsorption efficiency indicated a bright prospect for the two samples in wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app