Add like
Add dislike
Add to saved papers

Finite element analysis of knee and ankle joint during gait based on motion analysis.

Contact pressures in the articular cartilage during gait affect injuries and the degenerative arthritis of knee and ankle joints. However, only contact forces at the knee and ankle joints during gait can be estimated by using a rigid body dynamic model. The contact pressure distribution can be obtained quantitatively for a static posture by using finite element (FE) analysis in most cases. The purpose of this study is to develop a new method to obtain the contact pressure distribution at the knee and ankle joints during gait by integrating FE analysis with rigid body dynamic analysis. In this method, a reference FE model of the lower extremity is constructed first and is then transformed to each stance phase of the gait obtained from dynamic analysis by using homogeneous transformation. The muscle forces and ground reaction force (GRF) during gait obtained from the dynamic analysis were used as loading conditions for FE analysis. Finally, the contact pressure distribution at the tibia plateau cartilage and talus cartilage were estimated at the 1st peak, mid-stance, and the 2nd peak at the same time. The present method can provide the contact pressure distribution at the knee and ankle joints over the entire gait.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app