Add like
Add dislike
Add to saved papers

Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry and Tandem Mass Spectrometry: IV. 3-Ring and 4-Ring Isomers.

Analytical Chemistry 2018 November 28
Matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is used to characterize methylenedianiline (MDA) 3-ring and 4-ring species. Building on our previous MALDI-MS 2-ring MDA isomer study, here we compare 3-ring and 4-ring electrospray ionization (ESI) and MALDI results. In ESI, 3-ring and 4-ring MDAs each form one single [M+H]+ parent ion. Whereas in MALDI, each MDA multimer forms three unique precursor ions: [M+H]+, [M.]+, and [M-H]+. In this study, 3-ring and 4-ring MDA precursors are characterized to identify the unique fragment ions formed and their respective fragmentation pathways. In addition to the three possible precursors, the 3-ring and 4-ring species are higher-order oligomer precursors in polyurethane (PUR) production and thus provides additional insight into the polymeric behavior of these PUR hard block precursors. The combination of ion mobility-mass spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) allow the structural characterization of these larger MDA multimers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app