Add like
Add dislike
Add to saved papers

Central adiponectin induces trabecular bone mass partly through epigenetic downregulation of cannabinoid receptor CB1.

Central adiponectin (APN) in either the globular (gAPN) or full-length forms decreases sympathetic tone and increases trabecular bone mass in mice through the hypothalamus. It is known that cannabinoid type-1 (CB1) receptors are expressed in the hypothalamic ventromedial nucleus and participate in energy metabolism by controlling sympathetic activity. However, whether central APN could influence endocannabinoid signaling through CB1 receptor to regulate bone metabolism has not been characterized. Here we demonstrate that gAPN downregulated CB1 expression in embryonic mouse hypothalamus N1 cells in vitro. gAPN intracerebroventricular (icv) infusions also decreased hypothalamic CB1 expression and bone formation parameters in APN-knockout (APN-KO) and wild-type mice. Most importantly, mice pretreated with icv infusions with the CB1 receptor agonist arachidonyl-2'-chloroethylamine or antagonist rimonabant attenuated or enhanced respectively central APN induction of bone formation. We then investigated whether epigenetic signaling mechanisms were involved in the downregulation of hypothalamic CB1 expression by gAPN. We found gAPN enhanced expression levels of various histone deacetylases (HDACs), especially HDAC5. Furthermore, chromatin immunoprecipitation assays revealed HDAC5 bound to the transcriptional start site transcription start site 2 region of the CB1 promoter. In summary, our study identified a possible novel central APN-HDAC5-CB1 signaling mechanism that promotes peripheral bone formation through epigenetic regulation of hypothalamic CB1 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app