Add like
Add dislike
Add to saved papers

Studies on combination of oxaliplatin and dendrosomal nanocurcumin on proliferation, apoptosis induction, and long non-coding RNA expression in ovarian cancer cells.

Drug resistance remains a major challenge in the treatment of patients with ovarian cancer. Therefore, the development of new anticancer drugs is a clinical priority to develop more effective therapies. New approaches to improve clinical outcomes and limit the toxicity of anticancer drugs focus on chemoprevention. The aim of this study was to determine the effects of dendrosomal nanocurcumin (DNC) and oxaliplatin (Oxa) and their combination on cell death and apoptosis induction in human ovarian carcinoma cell lines analyzed by MTT assay and flow cytometry, respectively. The synergism effect of Oxa and DNC was analyzed using the equation derived from Chou and Talalay. In addition, real-time PCR was used to measure the effect of this combination on the expression levels of long non-coding RNAs with different expression in ovarian cancer and normal ovaries. Our data showed that the effect of DNC on cell death is more than curcumin alone in the same concentration. The greatest cell death effect was observed in combination of Oxa with DNC, while Oxa was added first, followed by DNC at 4 h interval (0/4 h). The findings indicated that DNC induced apoptosis significantly in both cell lines as compared to control groups; however, combination of both agents had no significant effect in apoptosis induction. In addition, combination of both agents significantly affects the relative expression of long non-coding RNAs investigated in the study as compared with mono therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app