Add like
Add dislike
Add to saved papers

Aerodynamic investigation of the thermo-dependent flow structure in the wake of a cyclist.

Journal of Biomechanics 2018 November 21
The main purpose of this study was to assess the influence of the environmental temperature on both the aerodynamic flow evolving around the bicycle and cycling power output. The CFD method was used to investigate the detailed flow field around the cyclist/bicycle system for a constant speed of 11.1 m/s (40 km/h) without wind. In complement, a mathematical model was used to determine the temperature-dependent power output in the range [-10; 40 °C]. The numerical investigation gives valuable information about the turbulent flow field in the cyclist's wake which evolves accordingly the surrounding temperature. A major result of this study is that the areas of overpressure upstream of the cyclist and of underpressure downstream of him are less extensive for a temperature of 40 °C compared to -10 °C. The results suggest that the aerodynamic braking effect of the bicycle is minimized when the air temperature is high, as a lower air density results in a reduction in drag on the cyclist. This study showed that the power required to maintain a constant speed is reduced when the temperature is high, the reason being a lower aerodynamic resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app