Add like
Add dislike
Add to saved papers

Aspidosperma pyrifolium, a medicinal plant from the Brazilian caatinga, displays a high antiplasmodial activity and low cytotoxicity.

Malaria Journal 2018 November 27
BACKGROUND: Several species of Aspidosperma plants are referred to as remedies for the treatment of malaria, especially Aspidosperma nitidum. Aspidosperma pyrifolium, also a medicinal plant, is used as a natural anti-inflammatory. Its fractionated extracts were assayed in vitro for activity against malaria parasites and for cytotoxicity.

METHODS: Aspidosperma pyrifolium activity was evaluated against Plasmodium falciparum using extracts in vitro. Toxicity towards human hepatoma cells, monkey kidney cells or human monocytes freshly isolated from peripheral blood was also assessed. Anti-malarial activity of selected extracts and fractions that presented in vitro activity were tested in mice with a Plasmodium berghei blood-induced infection.

RESULTS: The crude stem bark extract and the alkaloid-rich and ethyl acetate fractions from stem extract showed in vitro activity. None of the crude extracts or fractions was cytotoxic to normal monkey kidney and to a human hepatoma cell lines, or human peripheral blood mononuclear cells; the MDL50 values of all the crude bark extracts and fractions were similar or better when tested on normal cells, with the exception of organic and alkaloidic-rich fractions from stem extract. Two extracts and two fractions tested in vivo caused a significant reduction of P. berghei parasitaemia in experimentally infected mice.

CONCLUSION: Considering the high therapeutic index of the alkaloidic-rich fraction from stem extract of A. pyrifolium, it makes the species a candidate for further investigation aiming to produce a new anti-malarial, especially considering that the active extract has no toxicity, i.e., no mutagenic effects in the genototoxicity assays, and that it has an in vivo anti-malarial effect. In its UPLC-HRMS analysis this fraction was shown to have two major components compatible with the bisindole alkaloid Leucoridine B, and a novel compound, which is likely to be responsible for the activity against malaria parasites demonstrated in in vitro tests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app