Add like
Add dislike
Add to saved papers

Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro.

BMC Plant Biology 2018 November 27
BACKGROUND: Dehydrins play positive roles in regulating plant abiotic stress responses. The objective of this study was to characterize two dehydrin genes, CdDHN4-L and CdDHN4-S, generated by alternative splicing of CdDHN4 in bermudagrass.

RESULTS: Overexpression of CdDHN4-L with φ-segment and CdDHN4-S lacking of φ-segment in Arabidopsis significantly increased tolerance against abiotic stresses. The growth phenotype of Arabidopsis exposed to NaCl at 100 mM was better in plants overexpressing CdDHN4-L than those overexpressing CdDHN4-S, as well as better in E.coli cells overexpressing CdDHN4-L than those overexpressing CdDHN4-S in 300 and 400 mM NaCl, and under extreme temperature conditions at - 20 °C and 50 °C. The CdDHN4-L had higher disordered characterization on structures than CdDHN4-S at temperatures from 10 to 90 °C. The recovery activities of lactic dehydrogenase (LDH) and alcohol dehydrogenase (ADH) in presence of CdDHN4-L and CdDHN4-S were higher than that of LDH and ADH alone under freeze-thaw damage and heat. Protein-binding and bimolecular fluorescence complementation showed that both proteins could bind to proteins with positive isoelectric point via electrostatic forces.

CONCLUSIONS: These results indicate that CdDHN4-L has higher protective ability against abiotic stresses due to its higher flexible unfolded structure and thermostability in comparison with CdDHN4-S. These provided direct evidence of the function of the φ-segment in dehydrins for protecting plants against abiotic stress and to show the electrostatic interaction between dehydrins and client proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app