Add like
Add dislike
Add to saved papers

Molecular Self-assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles.

Encapsulation of peptide and protein-based drugs in polymeric nanoparticles is one of the fundamental fields in controlled-release drug delivery systems. The molecular mechanisms of absorption of peptides to the polymeric nanoparticles are still unknown and there is no precise molecular data on the encapsulation process of peptide and protein-based drugs. Herein, the self-assembly of different polymers and block copolymers with combinations of the various molecular weight of blocks and the effects of resultant polymer and copolymer nano-micelles on the stability of magainin2, an α-helical antimicrobial peptide, were investigated by means of all-atom molecular dynamics (MD) simulation. The micelle forming, morphology of micellar aggregations and changes in the first hydration shell of the micelles during micelles formation were explored, as well. The results showed that the peptide binds to the polymer and copolymer micelles and never detaches during the MD simulation time. In general, all polymers and copolymers simultaneously encapsulated the peptide during micelles formation and had the ability to maintain the helical structure of the peptide, whereas the first hydration shell of the peptide remains unchanged. Among the micelles, the polyethylene glycol (PEG) micelles completely encapsulated magainin2 and, surprisingly, the NMR structure of the peptide was perfectly kept during the encapsulation process. The MD results also indicated that the aromatic and basic residues of the peptide strongly interact with polymers/copolymers and play important roles in the encapsulation mechanism. This research will provide a good opportunity in the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app