Add like
Add dislike
Add to saved papers

Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator.

Nanoscale 2018 November 27
Herein, we demonstrate a strategy to improve the tensile strength, thermal safety issues, and electrochemical performance of an as-synthesized polyimide separator. By spraying the solution of a specific chemical constituent on both sides of a poly(amic acid) non-woven membrane followed by thermal treatment, a novel polyimide nanofibrous membrane with porous-layer-coated morphology was successfully fabricated by in situ self-bonding and micro-crosslinking technique. The self-bonding and micro-crosslinking techniques improve the tensile strength of the nanofiber membranes from 5 MPa to 28 MPa by forming a crosslinked network structure, thereby reducing the risk of nanofiber disassembly during long-term operation. The rigid structure and aromatic groups in the polyimide chain enable the separator to have outstanding thermal dimensional stability at temperatures as high as 300 °C and thermal stability (5% weight loss at about 528 °C). Additionally, the unique flame retarding capability of polyimide ensures high security of the battery as well. Notably, the lithium-ion battery using porous-layer-coated polyimide separator exhibits a much higher capability (129.9 mA h g-1, 5C) than that using a Celgard-2400 separator (95.2 mA h g-1, 5C) and could work steadily at 120 °C, thus implying promising application in next generation high-safety and high-performance lithium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app