Add like
Add dislike
Add to saved papers

Probing the effect of a room temperature ionic liquid on phospholipid membranes in multilamellar vesicles.

The large number of potential applications of ionic liquids (ILs) requires an understanding of their environmental impacts including their adverse effects on microorganisms living in soil and water. The molecular mechanism of toxic activities of these liquids is yet to be understood in detail. Any foreign molecules, interacting with an organism, have to encounter first the cellular membrane, which is predominantly composed of the lipid bilayer. In this work, multilamellar vesicles (MLV) of phospholipids have been used to shed light on the effect of an IL on the structure of a cellular membrane. The MLVs formed by the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are found to shrink as a consequence of interaction with an imidazolium-based IL, 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM] [BF4 ]). The absorbed ILs significantly modify the surface charge of the MLVs. While these observations indicate a strong membrane-IL interaction, synchrotron-based small angle X-ray diffraction (SAXD) measurements provide a structural description of the interaction. SAXD and Fourier transform infrared spectroscopy studies clearly reveal a disordering effect of the IL on the conformational organization of the lipid chains. The presence of the negatively charged lipid 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine sodium salt (DPPS) in MLVs plays an important role in disordering the chains in the membrane and inter-bilayer interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app