Add like
Add dislike
Add to saved papers

Bioavailability/speciation of arsenic in atmospheric PM 2.5 and their seasonal variation: A case study in Baoding city, China.

Arsenic (As) can be easily enriched in atmospheric particulate matters (PMs), especially in fine particulate matters (PM2.5 ). In this study, thirty two PM2.5 samples were collected in four seasons in Baoding, China, where the haze pollution was very serious in recent years. The total contents, species and bioavailability of arsenic in PM2.5 samples were investigated. Species of arsenic in the PM2.5 samples were discriminated as five fractions using a sequential extraction method: non-specifically sorbed fraction (F1), specifically-sorbed fraction (F2), amorphous and poorly-crystalline hydrous oxides of Fe and Al fraction (F3), well-crystallized hydrous oxides of Fe and Al fraction (F4) and residual fraction (F5). Bioavailabilities of arsenic in the PM2.5 samples were evaluated by in vitro tests using both solubility bioavailability research consortium (SBRC) and Gamble's solution extraction methods. The total volume concentrations of As in PM2.5 were significantly higher in winter than the other seasons. However, the highest mass concentration of As was found in spring. Scanning electron microscopy (SEM) characterization indicated that the physical morphology of the particles varied in different seasons. Significant differences of fraction distribution and BFs were found between different seasons. Arsenic in PM2.5 samples mainly presented in F1 with high bioavailability factor (BF), especially for the samples in summer. In vitro tests indicated that arsenic in PM2.5 could be dissolved more easily in gastric phase rather than intestinal and lung phases. There was a significant correlation between species and in vitro tests. Interestingly, a synergy effect was found between F2 and F3. Health risk assessment indicated that arsenic in PM2.5 via inhalation exposure for both children and adults could cause adverse effects. Principal component analysis suggested that the arsenic in PM2.5 was from the similar sources between summer and autumn, winter and spring, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app