Add like
Add dislike
Add to saved papers

AS2762900-00, a potent anti-human IL-23 receptor monoclonal antibody, prevents epidermal hyperplasia in a psoriatic human skin xenograft model.

Interleukin (IL)-23 is thought to be critical in the pathogenesis of psoriasis, and anti-IL-23 monoclonal antibodies (mAbs) have been approved for the treatment of psoriasis. We speculated that an anti-IL-23 receptor mAb might have greater efficacy than an anti-IL-23 mAb in the treatment of local inflamed lesions with high IL-23 levels. We previously generated an anti-human IL-23 receptor mAb, AS2762900-00, which potently blocked IL-23-induced cell proliferation, regardless of the concentration of IL-23. Here, we evaluated the therapeutic potential of AS2762900-00 in the treatment of psoriasis. Compared with untreated control, AS2762900-00 significantly reduced the epidermal thickness of lesions in a clinically relevant psoriatic human skin xenograft model. The expression of inflammatory genes including genes downstream of IL-23 signaling in the lesion tended to be lower in the AS2762900-00 group than the untreated group, suggesting that the inhibitory effects of AS2762900-00 in the psoriatic human skin xenograft model might occur via blockade of IL-23 signaling pathways. Further, AS2762900-00 showed an inhibitory effect on signal transducer and activator of transcription 3 (STAT3) phosphorylation as a downstream signal of IL-23 receptor activation in whole blood from patients with psoriasis. We also confirmed that AS2762900-00 inhibited IL-23-induced STAT3 phosphorylation in a concentration-dependent manner using whole blood from healthy donors. These data suggest that AS2762900-00 is a promising drug candidate for the treatment of psoriasis. In addition, STAT3 phosphorylation in whole blood may be a useful biomarker for the evaluation of the pharmacodynamic effects of AS2762900-00 in healthy volunteers in clinical development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app