Add like
Add dislike
Add to saved papers

Enhanced corrosion resistance and bonding strength of Mg substituted β-tricalcium phosphate/Mg(OH) 2 composite coating on magnesium alloys via one-step hydrothermal method.

To overcome the defect of high degradation rate of magnesium (Mg), bioactive coatings with compact structure, sufficient bonding strength and enhanced corrosion resistance are essential for Mg-based biodegradable implants. In this study, a dense Mg-substituted β-tricalcium phosphate and magnesium hydroxide (β-TCMP/Mg(OH)2 ) composite coating was prepared on AZ31 alloy via one-step hydrothermal method. The influences of hydrothermal temperature on its composition, microstructure of the surface and interface, bonding strength and corrosion behavior were evaluated. The results showed that the compact composite coating synthesized at 140 °C not only possessed a crack-free bilayered structure with an adequate bonding strength (more than 20.88 ± 1.60 MPa), but also got an extreme high impedance (1197.003 ± 152.817 kΩ cm2 ) so that significantly enhanced the corrosion resistance and inhibited the formation of pitting corrosion. Furthermore, the in vitro immersion test suggested that the composite coating slower the initial degradation rate of Mg alloys and enhanced its surface bioactivity to some extent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app