Add like
Add dislike
Add to saved papers

Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde.

Metabolic Engineering 2018 November 22
The conversion of plant material into biofuels and high value products is a two-step process of hydrolysing plant lignocellulose and next fermenting the sugars produced. However, lignocellulosic hydrolysis not only frees sugars for fermentation it simultaneously generates toxic chemicals, including phenolic compounds which severely inhibit yeast fermentation. To understand the molecular basis of phenolic compound toxicity, we performed genome-wide chemogenomic screens in Saccharomyces cerevisiae to identify deletion mutants that were either hypersensitive or resistant to three common phenolic compounds found in hydrolysates: coniferyl aldehyde, ferulic acid and 4-hydroxybenzoic acid. Despite being similar in structure, our screen revealed that the cell utilizes distinct pathways to tolerate phenolic compound exposure. Furthermore, although each phenolic compound induced reactive oxygen species (ROS), ferulic acid and 4-hydroxybenzoic acid-induced a general cytoplasmic ROS distribution while coniferyl aldehyde-induced ROS partially localized to the mitochondria and to a lesser extent, the endoplasmic reticulum. We found that the glucose-6-phosphate dehydrogenase pentose enzyme Zwf1, which is the first rate limiting step of pentose phosphate pathway, is required for reducing the production of coniferyl aldehyde-induced ROS, potentially through the sequestering of Zwf1 to sites ROS accumulation. Our novel insights into biological impact of three common phenolic inhibitors will inform the engineering of yeast strains with improve the efficiency of biofuel and biochemical production in the presence hydrolysate-derived phenolic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app