Add like
Add dislike
Add to saved papers

Immunoregulatory Siglec ligands are abundant in human and mouse aorta and are up-regulated by high glucose.

Life Sciences 2018 November 22
AIM: Inflammation is a driving force in development of atherosclerosis, and hyperglycemia is a significant risk factor for angiopathy. Siglec-9, expressed on human neutrophils and macrophages, engages specific glycan ligands on tissues to diminish ongoing inflammation.

MATERIALS AND METHOD: Siglec-9 ligands on human aorta were characterized and the effects of high glucose exposure on the expression of ligands for Siglec-9 on human umbilical vein endothelial cells (HUV-EC-C) in vitro and ligands for the comparable siglec (Siglec-E) on mouse aorta in vivo were studied.

KEY FINDINGS: Siglec-9 ligands were expressed broadly on human aorta, as well as on HUV-EC-C. Siglec-9 ligands on HUV-EC-C were sharply up-regulated under high glucose exposure in vitro, as were Siglec-E ligands on the aortas of hyperglycemic mice. Exposure of HUV-EC-C to high-glucose resulted in consistent inhibitory changes in co-cultured macrophages including increased apoptosis and decreased phagocytosis. Control of Siglec-9 ligand expression on HUV-EC-C was downstream of changes in an enzyme involved in their biosynthesis, UDP-galactose-4-epimerase (GALE) and increased cellular N-acetylgalactosamine. The alteration of GALE was associated with the regulatory microRNA hsa-let-7f.

SIGNIFICANCE: We conclude that exposure to high-glucose results in up-regulation of immune inhibitory Siglec-9 sialoglycan ligands on aorta and HUV-EC-C cells downstream of altered GALE and GalNAc expression, resulting in up-regulation of apoptosis and decrease of phagocytic activity of macrophages. Changes in Siglec-9 sialoglycan ligand expression on vascular endothelial cells may be a natural response to the initial steps of atherosclerosis and might be a potential target to regulate inflammation in diabetic angiopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app