Add like
Add dislike
Add to saved papers

Concurrent live imaging of DNA double-strand break repair and cell-cycle progression by CRISPR/Cas9-mediated knock-in of a tricistronic vector.

Scientific Reports 2018 November 24
Cell-cycle progression can be arrested by ionizing radiation-induced DNA double-strand breaks (DSBs). Although DSBs are patched by DSB repair systems, which comprise proteins such as p53-binding protein 1 (53BP1), the relationship between DSB repair progression and cell-cycle status in living cells is unclear. The probe FUCCI (fluorescent ubiquitination-based cell-cycle indicator) was previously developed for visualizing cell-cycle status. Here, we established novel live-imaging probes based on custom-designed plasmids designated "Focicles" harboring a tricistronic compartment encoding distinct fluorescent proteins ligated to the murine 53BP1 foci-forming region (FFR) and two cell-cycle indicators that are known components of FUCCI (hCdt1 and hGmnn). We used CRISPR/Cas9-mediated genome editing to obtain Focicle knock-in cell lines in NIH3T3 cells, which were subject to X-ray irradiation that induced comparable numbers of Focicle and endogenous-53BP1 foci. In addition, the Focicle probes enabled the kinetic analysis of both DSB repair and cell-cycle arrest/progression after irradiation, demonstrating that the Focicle knock-in cells progressed to cell division after DNA damage elimination. These newly developed probes can help to gain a better understanding of the dynamics of DSB repair and cell-cycle control to in turn guide cancer treatment development and cancer-risk assessments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app