Add like
Add dislike
Add to saved papers

Coherent perfect absorption and asymmetric interferometric light-light control in graphene with resonant dielectric nanostructures.

Optics Express 2018 October 30
Engineering light absorption in graphene has been the focus of intensive research in the past few years. In this paper, we show numerically that coherent perfect absorption can be realized in monolayer graphene in the near infrared range by harnessing resonances of dielectric nanostructures. The asymmetry of the structure results in different optical responses for light illuminated from the top side and the substrate side and enables asymmetric interferometric light-light control. The absorbed and scattered light exhibit interesting nonlinear behavior, allowing switching a strong optical signal output with a weak light. This work may stimulate potential applications including new types of sensors, coherent photodetectors and all-optical logical devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app