Add like
Add dislike
Add to saved papers

Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip.

Optics Express 2018 October 30
Silicon-on-chip photonic circuits are among some very promising platforms for generating nonclassical photonic quantum state, because of its low loss, small footprint, and compatibility with complementary metal-oxide-semiconductor (CMOS) and telecommunications techniques. Dense wavelength division multiplexing (DWDM) is a leading technique for enhancing the transmission capacity of both classical and quantum communications. To bridge the frequency gap between silicon-chip and other quantum systems, such as quantum memories, a quantum interface is indispensable. Here, we demonstrate a quantum interface for multiplexed energy-time entanglement states, which are generated on a silicon micro-ring cavity that is based on frequency up-conversion. By switching the pump wavelength, energy-time entanglement from any channel can be selected at will after being up-converted. The high visibilities of two-photon interference over three channels after frequency up-conversion clearly prove that the entanglement is fully preserved during the quantum frequency conversion (QFC) process. Our work provides new perspectives regarding channel capacity enhancement in quantum communications and for quantum resources being transferred between two different quantum systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app