Add like
Add dislike
Add to saved papers

Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber.

Optics Express 2018 October 16
A fiber temperature sensor based on four-wave mixing (FWM) with an oil-filled photonic crystal fiber (PCF) is proposed in this study, and a multipoint measurement based on the wavelength multiplexing of such sensors is constructed for the first time. The sensing performance and signal spectral characteristics of the temperature sensor are theoretically and experimentally studied. The maximum temperature sensitivity of the signal light of 0.207 nm/°C is achieved using a FWM sensing fiber with a length of 10 cm. The signal wavelength response to excitation power is also explored in this experiment. Results showed that the temperature sensor is relatively insensitive to the fluctuation of power change. The wavelength multiplexing of a FWM-based PCF temperature sensor also presents the possibility of multiplexing measurement and multipoint sensing, and high multiplexed capability is theoretically predicted to be obtainable with optimized sensitivity and splicing loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app