Add like
Add dislike
Add to saved papers

Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.

Optics Express 2018 October 16
Plasmon resonances and electric field enhancements of several near-field optical antennae with plasmonic nanostructures engineered at their apices were quantitatively compared using finite difference time domain simulations. Although many probe designs have been tested experimentally, a systematic comparison of field enhancements has not been possible, due to differences in instrument configuration, reporter mechanism, excitation energy, and plasmonic materials used. For plasmonic nanostructures attached to a non-plasmonic support (e.g., a nanoparticle functionalized AFM tip), we find that the complex refractive index of the support material is critical in controlling the overall plasmonic behavior of the antenna. Supports with strong absorption at optical energies (Pt, W) dampen plasmon resonances and lead to lower enhancements, while those with low absorption (SiO2 , Si3 N4 , Si) boost enhancement by increasing the extinction cross-section of the apex nanostructure. Using a set of physically realistic constraints, probes were optimized for peak plasmonic enhancement at common near-field optical wavelengths (633-647 nm) and those with focused ion-beam milled grooves near the apex were found to give the largest local field enhancements (~30x). Compared to unstructured metal cones, grooved probes gave a 300% improvement in field strength, which can boost tip-enhanced Raman spectroscopy (TERS) signals by 1-2 orders of magnitude. Moreover, grooved probe resonances can be easily tuned over visible and near-infrared energies by varying the plasmonic metal (Ag or Au) and groove location. Overall, this work shows that probes with strong localized surface plasmon resonances at their apices can be engineered to provide large field enhancements and boost signals in near-field optical experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app