Add like
Add dislike
Add to saved papers

Near-infrared acetylene sensor system using off-axis integrated-cavity output spectroscopy and two measurement schemes.

Optics Express 2018 October 2
For highly sensitive and accurate acetylene (C2 H2 ) detection, a near-infrared (NIR) off-axis integrated-cavity output spectroscopy (OA-ICOS) sensor system based on an ultra-compact cage-based absorption cell was proposed. The absorption cell with dimensions of 10 cm × 8 cm × 6 cm realized a dense-pattern and an easily-aligned stable optical system. The OA-ICOS sensor system employed a 6cm-long optical cavity that was formed by two mirrors with a reflectivity of 99.35% and provided an effective absorption path length of ∼9.28 m. The performance of the C2 H2 sensor system based on two measurement schemes, i.e. laser direct absorption spectroscopy (LDAS) and wavelength modulation spectroscopy (WMS) is reported. A NIR distributed feedback (DFB) laser was employed for targeting a C2 H2 absorption line at 6523.88 cm-1 . An Allan deviation analysis yielded a detection sensitivity of 760 parts-per-billion in volume (ppbv) for an averaging time of 304 s using the LDAS-based OA-ICOS. A detection sensitivity of 85 ppbv for an averaging time of 250 s was obtained using the WMS-based OA-ICOS, which was further improved by a factor of ~9 compared to the result obtained with the LDAS method. The proposed sensor system has the advantages of reduced size and cost with acceptable detection sensitivity, which is suitable for applications in trace gas sensing in harsh environments and weight-limited balloon-embedded observations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app