Add like
Add dislike
Add to saved papers

Molecular Characterization, Expression and Functional Analysis of Chicken STING .

Innate immunity is an essential line of defense against pathogen invasion which is gained at birth, and the mechanism involved is mainly to identify pathogen-associated molecular patterns through pattern recognition receptors. STING (stimulator of interferon genes) is a signal junction molecule that hosts the perception of viral nucleic acids and produces type I interferon response, which plays a crucial role in innate immunity. However, relatively few studies have investigated the molecular characterization, tissue distribution, and potential function of STING in chickens. In this study, we cloned the full-length cDNA of chicken STING that is composed of 1341 bp. Sequence analyses revealed that STING contains a 1140-bp open-reading frame that probably encodes a 379-amino acid protein. Multiple sequence alignments showed that the similarity of the chicken STING gene to other birds is higher than that of mammals. Real-time polymerase chain reaction (PCR) assays revealed that STING is highly expressed in the spleen, thymus and bursa of fabricious in chickens. Furthermore, we observed that STING expression was significantly upregulated both in vitro and in vivo following infection with Newcastle disease virus (NDV). STING expression was also significantly upregulated in chicken embryo fibroblasts upon stimulation with poly(I:C) or poly(dA:dT). Taken together, these findings suggest that STING plays an important role in antiviral signaling pathways in chickens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app