Add like
Add dislike
Add to saved papers

A novel LRR-only protein mediates bacterial proliferation in hemolymph through regulating expression of antimicrobial peptides in mollusk Chlamys farreri.

Leucine-rich repeat (LRR)-only proteins are involved in innate immune responses through mediating protein-ligand or protein-protein interactions, yet the exact roles of most LRR-only proteins in invertebrates are not well documented. In the present study, a novel LRR-only protein (designated CfLRRop-7) was identified in Zhikong scallop Chlamys farreri. The full-length cDNA sequence of CfLRRop-7 was 1463 bp and contained an open reading frame of 1086 bp, which encoded a protein of 361 amino acids. Five LRR motifs with a conserved signature sequence LxxLxLxxNxL were identified in the predicted protein sequence. The expression of CfLRRop-7 was particularly high in hemocytes. The expression of CfLRRop-7 was relatively high in oocytes and embryos during the ontogenesis of scallops. CfLRRop-7 expression changed in hemocytes in response to stimulation with different microbes, including Vibrio splendidus, Staphylococcus aureus and Pichia pastoris. CfLRRop-7 recognized five kinds of ligands/agonists. CfLRRop-7 recombinant protein inhibited bacterial proliferation in hemolymph and induced lysozyme activity in serum. After knocking down CfLRRop-7, the mRNA expression of selected antimicrobial peptides was reduced. All these results indicated that CfLRRop-7 might be a potential pattern recognition receptor that recognizes various pathogen associated molecular patterns, and regulates antibacterial immunity in scallops.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app