Add like
Add dislike
Add to saved papers

The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.

NEW FINDINGS: What is the central question of this study? Is the magnitude of neuromuscular fatigue dependent upon exercise intensity above critical power (CP) when W' (the curvature constant of the power-duration relationship) is depleted? What is the main finding and its importance? The magnitude of neuromuscular fatigue is the same after two bouts of supra-CP cycling (3 versus 12 min) when controlling for W' depletion but is larger for individuals of greater anaerobic capacity after the shorter bout and smaller for individuals of greater aerobic capacity after the longer exercise bout. These findings provide new insight into the mechanisms underpinning exercise above CP.

ABSTRACT: The aim of the present study was to test whether the development of neuromuscular fatigue within the severe-intensity domain could be linked to the depletion of the curvature constant (W') of the power-duration relationship. Twelve recreationally active men completed tests to determine peak oxygen consumption, critical power (CP) and W', followed by two randomly assigned constant-load supra-CP trials set to deplete W' fully in 3 (P-3) and 12 min (P-12). Pre- to postexercise changes in maximal voluntary contraction, potentiated quadriceps twitch force evoked by single (Qpot ) and paired high- (PS100) and low-frequency (PS10) stimulations and voluntary activation were determined. Cycling above CP reduced maximal voluntary contraction (P-3, -20 ± 10% versus P-12, -15 ± 7%), measures associated with peripheral fatigue (Qpot , -35 ± 13 versus -31 ± 14%; PS10, -38 ± 13 versus -37 ± 17%; PS100, -18 ± 9 versus -13 ± 8% for P-3 and P-12, respectively) and voluntary activation (P-3, -12 ± 3% versus P-12, -13 ± 3%; P < 0.05), with no significant difference between trials (P > 0.05). Changes in maximal voluntary contraction and evoked twitch forces were inversely correlated with CP and peak oxygen consumption after P-12, whereas W' was significantly correlated with changes in Qpot and PS10 after P-3 (P < 0.05). Therefore, the magnitude of neuromuscular fatigue does not depend on exercise intensity when W' is fully exhausted during severe-intensity exercise; nonetheless, exploration of inter-individual variations suggests that mechanisms underpinning exercise tolerance within this domain differ between short- and long-duration exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app