Add like
Add dislike
Add to saved papers

Study on establishing normal ranges of chosen biochemical parameters of haemolymph of Cornu aspersum maxima and Cepaea nemoralis gastropods.

The aim of the study was to establish normal ranges for chosen biochemical parameters of haemolymph of snails (Gasropoda: Mollusca), in the light of the use of these animals as experi- mental models in various types of studies. The study was conducted on 100 specimens of Cornu aspersum maxima (CAM) and 100 specimens of Cepaea nemoralis (CN). The haemolymph col- lected from the animals was analysed using colorimetry to assay aspartate transaminase (AST) activity, alanine transaminase (ALT) activity, amylase activity and the concentrations of urea and triglycerides. In the further part of the study, the influence of administering doxycycline with feed on the change of AST and ALT activity in snail haemolymph has been studied. The normal values established for CAM are as follow: AST activity: 26-38 u/l, ALT activity: 0-11 u/l, amylase activity 9-16 u/l, concentration of urea: 3-6 mg/dl, concentration of triglycerides: 16-20 mg/dl. For CN, the following data have been obtained: AST activity: 30-80 u/l, ALT activity: 0-15 u/l, amylase activity 12-15 u/l, concentration of urea: 5-8 mg/dl, concentration of triglycerides: 18-24 mg/dl. It has been shown that doxycycline presents a high workload on the hepatopancreas of snails, which is reflected by a statistically significant (p ⟨ 0.05) increase of AST and ALT activity in the haemolymph of the specimens which obtained doxycycline in feed, as compared to the groups with antibiotic-free feed. The haemolymph activity of both studied parameters increased together with study time and tetracycline administration time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app