Add like
Add dislike
Add to saved papers

'Nano on micro' hierarchical porous all carbon structures: an insight into interfacial interactions with bacteria.

Micron long carbon nanofibers (CNFs) were grown on porous carbon beads to give an active surface for rapid immobilization of guest molecules. The fabrication of nanostructures using a catalytic route involving chemical vapour deposition on a porous substrate was accomplished by the controlled synthesis of iron nanoclusters on the surface of porous carbon beads. The challenge of catalyst nanoparticle diffusion into the porous substrate was addressed by using iron coordinated ligand complexes and optimizing the loading percentage of metal salts onto beads. The effect of using tethered bottom up surface processed CNFs on the porous beads' morphologies was established using structural characterization. The protruding architecture of CNFs on the porous carbon surface was subjected to bacterial colonisation in order to determine the efficiency of cell conjugation onto hairy structures, particularly at a low concentration. The interfaces of immobilized bacteria on the textured surface were studied by varying the pH and external physical stimuli to check the biofilm formation. The strategy of fabricating all carbon porous beads, which had topologically controlled 'nano on micro' geometries, to give fast immobilization of guest molecules could be useful in the future for developing an active disinfectant surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app