Add like
Add dislike
Add to saved papers

Site-Specific Insulin-Trehalose Glycopolymer Conjugate by Grafting From Strategy Improves Bioactivity.

ACS Macro Letters 2018 March 21
Insulin is an important therapeutic protein for the treatment of diabetes, but it is unstable and aggregates upon exposure to environmental stressors encountered during storage and transport. To prevent degradation of the protein in this manner and retain as much in vivo bioactivity as possible, a well-defined insulin-trehalose glycopolymer conjugate was synthesized. To accomplish this, a strategy was employed to site-specifically modify insulin with a polymerization initiator at a particular conjugation site; this also facilitated purification and characterization. Lysine of the B chain was preferentially modified by conducting the reaction at high pH, taking advantage of its higher nucleophilicity than the N-terminal amines. Trehalose monomer was polymerized directly from this macroinitiator to form a well-defined conjugate. Bioactivity of the site-specific conjugate was shown to be higher compared to the non-specific conjugate and the same as the analogous site-specific polyethylene glycol (PEG) conjugate as confirmed by the insulin tolerance test (ITT) in mice. The conjugated trehalose glycopolymer also stabilized insulin to heat as measured by high-performance liquid chromatography (HPLC).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app