Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Accuracy of 3D surface scanners for clinical torso and spinal deformity assessment.

Externally visible deformities are cosmetic features of great concern for Adolescent Idiopathic Scoliosis (AIS) patients. Current assessment techniques for AIS do not fully encompass the external deformity. A non-invasive method capable of capturing superficial anatomy, such as 3D scanning, would enable better qualitative and quantitative evaluation of cosmesis. This study aimed to quantify the accuracy of commonly available scanners, in assessing posterior asymmetry in AIS. The technique of 3D surface deviation analysis was proposed as a suitable method for comparing the models created by each scanner. Eight plaster cast moulds manufactured to create braces for AIS patients were used as test samples. Four 3D scanners were selected: Solutionix RexScan CS+; Artec Eva; Microsoft Kinect V1; iPhone with 123D Catch App. These scanners were selected from those available as representative of a range of scanning technologies. Each cast was scanned and 3D models created. A simulated rib hump measurement was obtained and the surface-to-surface deviations between the Solutionix scan and all other scans were determined. The Solutionix scanner is a metrology scanner of very high quality and so it was selected as the reference. Surface-to-surface deviations were calculated in the positive and negative directions separately to specifically identify size and volume inaccuracies created by the scans. Surface deviations showed excellent agreement between the Solutionix and the Eva with deviations of +0.17 ± 0.17 mm (Eva regions larger) and -0.20 ± 0.32 mm (Eva regions smaller) (mean±SD). The Kinect showed lower agreement (+1.58 ± 1.50 mm and -0.58 ± 0.58 mm). The iPhone scans were not able to be scaled to the correct size, so were excluded. Rib hump measurements with all scanners were within clinical measurement variability (±4.9 deg) of the known values. These commercially available 3D scanners are capable of imaging torso shape in 3D and deriving clinically relevant external deformity measures. The non-invasive 3D topographic information provided can be used to improve assessment of torso shape in spinal deformity patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app