Add like
Add dislike
Add to saved papers

MutSγ-Induced DNA Conformational Changes Provide Insights into its Role in Meiotic Recombination.

Biophysical Journal 2018 November 7
In many organisms, MutSγ plays a role in meiotic recombination, facilitating crossover formation between homologous chromosomes. Failure to form crossovers leads to improper segregation of chromosomes and aneuploidy, which in humans result in infertility and birth defects. To improve current understanding of MutSγ function, this study investigates the binding affinities and structures of MutSγ in complex with DNA substrates that model homologous recombination intermediates. For these studies, we overexpressed and isolated from Escherichia coli the yeast MutSγ protein Saccharomyces cerevisiae (Sc) Msh4-Msh5. Sc Msh4-Msh5 binds Holliday junction (HJ)-like substrates, 3' overhangs, single-stranded (ss) forks, and the displacement loop with nanomolar affinity. The weakest binding affinities are detected for an intact duplex and open-junction construct. Similar to the human protein, Sc Msh4-Msh5 exhibits the highest affinity for the HJ with a Kd  < 0.4 nM in solution. Energy-transfer experiments further demonstrate that DNA structure is modulated by the binding interaction with the largest changes associated with substrates containing an ss end. Upon binding, Sc Msh4-Msh5 displaces the ss away from the duplex in most of the ss-containing intermediates, potentially enabling the binding of RPA and other proteins. In the case of the junction-like intermediates, Msh4-Msh5 binding either stabilizes the existing stacked structure or induces formation of the stacked X conformation. Significantly, we find that upon binding, Msh4-Msh5 stacks an open-junction construct to the same extent as the standard junction. Stabilization of the junction in the stacked conformation is generally refractory to branch migration, which is consistent with a potential role for MutSγ to stabilize HJs and prevent branch migration until resolution by MutLγ. The different binding modalities observed suggest that Msh4-Msh5 not only binds to and stabilizes stacked junctions but also participates in meiotic recombination before junction formation through the stabilization of single-end invasion intermediates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app