Add like
Add dislike
Add to saved papers

Icariin abrogates osteoclast formation through the regulation of the RANKL-mediated TRAF6/NF-κB/ERK signaling pathway in Raw264.7 cells.

Phytomedicine 2018 December 2
BACKGROUND: Icariin is pharmacologically active prenylated flavonoid glycoside that has various biologic effects such as antioxidant, anticancer, and anti-inflammatory activities. In addition, icariin has been used in Chinese medicine for thousands of years to treat osteoporosis and it is still being used today. However, direct mechanism of icariin in the treatment of bone disease is not understood.

PURPOSE: The purpose of this study is to investigate whether icariin influences RANKL-induced osteoclast formation in murine macrophages.

METHODS: Osteoclastogenesis was determined by TRAP staining and activity assay. Inhibition of signaling pathways and marker protein expression were evaluated by western blot analysis. The NF-κB (p65) nuclear localization was detected by immunofluorescence assay, and NF-κB/DNA-binding activity was detected by electrophoretic mobility shift assay (EMSA).

RESULTS: In our study, icariin inhibited the differentiation of pre-osteoclast cells into osteoclasts and suppressed expression of various genes involved in osteoclast formation and bone resorption. Also, icariin blocked the osteoclastogenesis induced by MCF7 and MDA-MB-231 breast cancer cells through inhibition of NF-κB activation. We found that icariin inhibited RANKL-stimulated TRAF-6 expression, and subsequently suppressed the phosphorylation of ERK, but icariin did not show an effect on p38, JNK, and Akt activation.

CONCLUSION: These results indicate that icariin is likely to be a candidate for bone-related disease treatment and that icariin provides insights into the molecular mechanisms that influence RANKL-induced osteoclast differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app