JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Extracellular traps in kidney disease.

Kidney International 2018 December
During the past decade the formation of neutrophil extracellular traps (NETs) has been recognized as a unique modality of pathogen fixation (sticky extracellular chromatin) and pathogen killing (cytotoxic histones and proteases) during host defense, as well as collateral tissue damage. Numerous other triggers induce NET formation in multiple forms of sterile inflammation, including thrombosis, gout, obstruction of draining ducts, and trauma. Whether neutrophils always die along with NET release, and if they do die, how, remains under study and is most likely context dependent. In certain settings, neutrophils release NETs while undergoing regulated necrosis-for example, necroptosis. NETs and extracellular traps (ETs) released by macrophages also have been well documented in kidney diseases-for example, in various forms of acute kidney injury. Histones released from ETs and other sources are cytotoxic and elicit inflammation, contributing to necroinflammation of the early-injury phase of acute tubular necrosis in antineutrophil cytoplasmic antibody-related renal vasculitis, anti-glomerular basement membrane disease, lupus nephritis, and thrombotic microangiopathies. Finally, acute kidney injury-related releases of dying renal cells or ETs promote remote organ injuries-for example, acute respiratory distress syndrome. In this review, we summarize what is known about the release of ETs from neutrophils and macrophages in the kidney, the available experimental evidence, and ongoing discussions in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app