Add like
Add dislike
Add to saved papers

Non-adiabatic mass-correction functions and rovibrational states of 4 He 2 + ( X 2 Σ u + ).

The mass-correction functions in the second-order non-adiabatic Hamiltonian are computed for the 4 He 2 + molecular ion using the variational method, floating explicitly correlated Gaussian functions, and a general coordinate-transformation formalism. When non-adiabatic rovibrational energy levels are computed using these (coordinate-dependent) mass-correction functions and a highly accurate potential energy and diagonal Born-Oppenheimer correction curve, significantly improved theoretical results are obtained for the nine rotational and two rovibrational intervals known from high-resolution spectroscopy experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app