Add like
Add dislike
Add to saved papers

Folate receptor-targeted theranostic IrS x nanoparticles for multimodal imaging-guided combined chemo-photothermal therapy.

Nanoscale 2018 November 23
Nano-drug delivery systems with multi-modality imaging capacities are worth pursuing because they integrate diagnostic and therapeutic functions. Herein, we report the design, synthesis and evaluation of modified iridium sulfide (IrSx) nanoparticles (NPs) for cancer therapy in vitro and in vivo. This nanosystem was prepared by modifying IrSx with polyethylene glycol (PEG) conjugated to the targeting ligand folate (FA) for multimodal imaging-guided combined chemo-photothermal therapy. Upon PEG modification, the small IrSx NPs (about 4 nm) self-assembled into much larger (about 120 nm) IrSx-PEG-FA NPs, which exhibited high photostability, ideal photothermal effect, high drug loading and pH-/photothermal-responsive drug release properties. By using the model anticancer drug camptothecin (CPT), we demonstrated that CPT@IrSx-PEG-FA can effectively target FA-receptor-positive cancer cells in vitro and show efficient tumor accumulation in vivo. The combination of CPT@IrSx-PEG-FA treatment and irradiation with an 808 nm laser resulted in complete tumor elimination. Moreover, photothermal/photoacoustic (PA)/computed tomography (CT) imaging provided an effective means to monitor the therapeutic effects. Interestingly, the nanoparticles can be cleared, resulting in low systematic toxicity of CPT@IrSx-PEG-FA. Our work demonstrates that the as-prepared IrSx-PEG-FA NPs present a promising platform for the construction of multifunctional theranostic agents for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app