Add like
Add dislike
Add to saved papers

The accumulation dynamics, elimination and risk assessment of paralytic shellfish toxins in fish from a water supply reservoir.

Paralytic shellfish Toxins (PSTs) or saxitoxins are neurotoxins that block the neural transmission by binding to the voltage-gated sodium channels in the nerve cells. There are >50 analogues described, which could be biotransformed into a molecular form of greater or lesser toxicity. The Alagados Reservoir is used for water supply, and persistent cyanobacterial blooms as well as PSTs concentrations have been found in this water body since 2002. The aims of this study were to quantify the concentrations of PSTs in the water and fish samples from the Alagados Reservoir. In addition, we evaluated the elimination of PSTs for 90 days in fish and estimated the potential risk to human health. Water and fish samples were collected from the reservoir. For the water samples the phytoplankton and chemical analyses were carried out. Fish were divided into two sample times: Field Samples (FS) and Elimination Experiment Samples (EES), which were maintained for 90 days in filtered and dechlorinated water. For chemical analysis, the muscles of FS were collected on the fish sampling day and the muscles and feces of EES were collected at 7, 15, 30, 45, 60, 75 and 90 days. PSTs concentrations were present in water and fish samples, and they were estimated as a potential risk to humans; mainly for children. In addition, toxins were accumulated, biotransformed to other analogues and excreted by the fish. However, after 90 days, the toxins were still present in the water and fish muscle. Therefore, PSTs can remain for a long period in water, and fish can be a carrier of these neurotoxins. New approaches of monitoring and management are necessary in the actual global context of cyanobacteria and cyanotoxins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app