Add like
Add dislike
Add to saved papers

The Designer Antimicrobial Peptide A-hBD-2 Facilitates Skin Wound Healing by Stimulating Keratinocyte Migration and Proliferation.

BACKGROUND/AIMS: Antimicrobial peptides are effective promoters of wound healing but are susceptible to degradation. In this study, we replaced the GIGDP unit on the N-terminal of the endogenous human antimicrobial peptide hBD-2 with APKAM to produce A-hBD-2 and analyzed the effect on wound healing both in vitro and in vivo.

METHODS: The effects of A-hBD-2 and hBD-2 on cytotoxicity and proliferation in keratinocytes were assessed by Cell Counting Kit-8 assay. The structural stability and antimicrobial activity of hBD-2 and A-hBD-2 were evaluated against Staphylococcus aureus. RNA and proteins levels were evaluated by real-time PCR and western blotting, respectively. Cell migration was evaluated using a transwell assay. Cell cycle analysis was performed by flow cytometry. Wound healing was assessed in Sprague-Dawley rats. Epidermal thickness was evaluated by hematoxylin and eosin staining.

RESULTS: We found that hBD-2 exhibited cytotoxicity at high concentrations and decreased the structural stability in the presence of high sodium chloride concentrations. A-hBD-2 exhibited increased structural stability and antimicrobial activity, and had lower cytotoxicity in keratinocytes. A-hBD-2 increased the migration and proliferation of keratinocytes via phosphorylation of EGFR and STAT3 and suppressed terminal differentiation of keratinocytes. We also found that A-hBD-2 elicited mobilization of intracellular Ca2+ and stimulated keratinocytes to produce pro- and anti-inflammatory cytokines and chemokines via phospholipase C activation. Furthermore, A-hBD-2 promoted wound healing in vivo.

CONCLUSION: Our data suggest that A-hBD-2 may be a promising candidate therapy for wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app