Add like
Add dislike
Add to saved papers

Interphase cohesin regulation ensures mitotic fidelity after genome reduplication.

To ensure faithful genome propagation, mitotic cells alternate one round of chromosome duplication with one round of chromosome separation. Chromosome separation failure thus causes genome reduplication, which alters mitotic chromosome structure. Such structural alterations are well-documented to impair mitotic fidelity following aberrant genome re-duplication, including in diseased states. In contrast, we recently showed that naturally occurring genome re-duplication does not alter mitotic chromosome structure in Drosophila papillar cells. Our discovery raised the question of how a cell undergoing genome reduplication might regulate chromosome structure to prevent mitotic errors. Here, we show that papillar cells ensure mitotic fidelity through interphase cohesin regulation. We demonstrate a requirement for cohesins during programmed rounds of papillar genome reduplication known as endocycles. This interphase cohesin regulation relies on cohesin release but not cohesin cleavage, and depends on the conserved cohesin regulator Pds5. Our data suggest that a distinct form of interphase cohesin regulation ensures mitotic fidelity after genome reduplication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app