Add like
Add dislike
Add to saved papers

Design of a sensitive uncooled thermal imager based on a liquid crystal Fabry-Perot interferometer.

Applied Optics 2018 October 2
Microbolometers are the dominant technology for uncooled thermal imaging; however, devices based on a direct retardation measurement of a liquid crystal (LC) transducer pixel have been shown to have comparable sensitivity. In this paper, an approach for increasing LC transducer sensitivity utilizing an etalon structure is considered. A detailed design for an LC resonant cavity between dielectric mirrors is proposed and the performance is evaluated numerically. The measured quantity is the transmission of a visible wavelength through the etalon, which requires no thermal contact with the IR sensor. Numerical and analytical calculations that consider a 470 nm thick LC pixel demonstrate that the change in transmitted intensity with temperature is 26 times greater in the device based on a resonant structure than in a device based on a direct retardation measurement. Finally, the paper discusses how the dielectric mirror materials, dimensions of the resonant cavity structure, and expected process tolerances affect the sensitivity of the device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app