Add like
Add dislike
Add to saved papers

Tunable terahertz metamaterial absorber based on Dirac semimetal films.

Applied Optics 2018 November 11
In this paper, the tunable properties of metamaterial absorbers based on 3D Dirac semimetal films (DSFs) in the terahertz (THz) regime are discussed in theory. We consider the absorbers with square-shaped, circular-patch, and cross-shaped resonators. These resonances are theoretically polarization-insensitive at normal incidence because of their 90° rotational symmetry and can achieve perfect absorption in numerical simulation. We then introduce dual-band and broadband absorbers by combining two DSF-based square-shaped (or circular-patch) resonators into one unit cell with different sizes. Unlike with a conventional metal-based absorber, the absorption of a DSF-based absorber can be dynamically tuned by varying the Fermi energy instead of refabricating the structures. Moreover, the DSFs can be regarded as a "Salisbury screen" of an absorber to block the transmission at the THz frequencies, which can be more convenient than graphene in the application of a tunable absorber. Our designs have potential applications in various fields such as sensors, thermal detectors, and imagers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app